Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.663
Filter
1.
Proc Natl Acad Sci U S A ; 121(22): e2316176121, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38771878

ABSTRACT

The striato-nigral (Str-SN) circuit is composed of medium spiny neuronal projections that are mainly sent from the striatum to the midbrain substantial nigra (SN), which is essential for regulating motor behaviors. Dysfunction of the Str-SN circuitry may cause a series of motor disabilities that are associated with neurodegenerative disorders, such as Huntington's disease (HD). Although the etiology of HD is known as abnormally expanded CAG repeats of the huntingtin gene, treatment of HD remains tremendously challenging. One possible reason is the lack of effective HD model that resembles Str-SN circuitry deficits for pharmacological studies. Here, we first differentiated striatum-like organoids from human pluripotent stem cells (hPSCs), containing functional medium spiny neurons (MSNs). We then generated 3D Str-SN assembloids by assembling striatum-like organoids with midbrain SN-like organoids. With AAV-hSYN-GFP-mediated viral tracing, extensive MSN projections from the striatum to the SN are established, which formed synaptic connection with GABAergic neurons in SN organoids and showed the optically evoked inhibitory postsynaptic currents and electronic field potentials by labeling the striatum-like organoids with optogenetic virus. Furthermore, these Str-SN assembloids exhibited enhanced calcium activity compared to that of individual striatal organoids. Importantly, we further demonstrated the reciprocal projection defects in HD iPSC-derived assembloids, which could be ameliorated by treatment of brain-derived neurotrophic factor. Taken together, these findings suggest that Str-SN assembloids could be used for identifying MSN projection defects and could be applied as potential drug test platforms for HD.


Subject(s)
Huntington Disease , Organoids , Humans , Huntington Disease/pathology , Huntington Disease/metabolism , Organoids/pathology , Organoids/metabolism , Substantia Nigra/pathology , Substantia Nigra/metabolism , Corpus Striatum/pathology , Corpus Striatum/metabolism , Neurons/metabolism , Neurons/pathology , Cell Differentiation , GABAergic Neurons/metabolism , GABAergic Neurons/pathology , Pluripotent Stem Cells/metabolism , Optogenetics
2.
Development ; 151(9)2024 May 01.
Article in English | MEDLINE | ID: mdl-38722098

ABSTRACT

During development, the gastrointestinal tract undergoes patterning along its anterior-posterior axis to define regions with distinct organs and functions. A new paper in Development derives human intestinal organoids from an individual with duodenal defects and a compound heterozygous variant in the gene encoding the transcription factor RFX6. By studying these organoids, the authors identify novel roles for RFX6 in intestinal patterning. To learn more about the story behind the paper, we caught up with first author J. Guillermo Sanchez and corresponding author Jim Wells, an endowed professor in the Division of Developmental Biology at Cincinnati Children's Hospital, USA, where he is also the Director for Basic Research in the Division of Endocrinology.


Subject(s)
Developmental Biology , Humans , History, 21st Century , History, 20th Century , Developmental Biology/history , Regulatory Factor X Transcription Factors/genetics , Regulatory Factor X Transcription Factors/metabolism , Organoids/metabolism , Body Patterning/genetics
3.
Sci Rep ; 14(1): 10846, 2024 05 13.
Article in English | MEDLINE | ID: mdl-38736008

ABSTRACT

Human liver organoids are in vitro three dimensionally (3D) cultured cells that have a bipotent stem cell phenotype. Translational research of human liver organoids for drug discovery has been limited by the challenge of their low hepatic function compared to primary human hepatocytes (PHHs). Various attempts have been made to develop functional hepatocyte-like cells from human liver organoids. However, none have achieved the same level of hepatic functions as PHHs. We here attempted to culture human liver organoids established from cryopreserved PHHs (PHH-derived organoids), using HYDROX, a chemically defined 3D nanofiber. While the proliferative capacity of PHH-derived organoids was lost by HYDROX-culture, the gene expression levels of drug-metabolizing enzymes were significantly improved. Enzymatic activities of cytochrome P450 3A4 (CYP3A4), CYP2C19, and CYP1A2 in HYDROX-cultured PHH-derived organoids (Org-HYDROX) were comparable to those in PHHs. When treated with hepatotoxic drugs such as troglitazone, amiodarone and acetaminophen, Org-HYDROX showed similar cell viability to PHHs, suggesting that Org-HYDROX could be applied to drug-induced hepatotoxicity tests. Furthermore, Org-HYDROX maintained its functions for up to 35 days and could be applied to chronic drug-induced hepatotoxicity tests using fialuridine. Our findings demonstrated that HYDROX could possibly be a novel biomaterial for differentiating human liver organoids towards hepatocytes applicable to pharmaceutical research.


Subject(s)
Cell Differentiation , Hepatocytes , Nanofibers , Organoids , Humans , Hepatocytes/drug effects , Hepatocytes/metabolism , Hepatocytes/cytology , Organoids/drug effects , Organoids/metabolism , Organoids/cytology , Cell Differentiation/drug effects , Nanofibers/chemistry , Cells, Cultured , Liver/cytology , Liver/drug effects , Liver/metabolism , Chemical and Drug Induced Liver Injury/pathology , Chemical and Drug Induced Liver Injury/metabolism , Cell Survival/drug effects , Cytochrome P-450 CYP3A/metabolism , Cytochrome P-450 CYP3A/genetics
4.
Nat Commun ; 15(1): 4034, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38740814

ABSTRACT

Mechanisms underlying human hepatocyte growth in development and regeneration are incompletely understood. In vitro, human fetal hepatocytes (FH) can be robustly grown as organoids, while adult primary human hepatocyte (PHH) organoids remain difficult to expand, suggesting different growth requirements between fetal and adult hepatocytes. Here, we characterize hepatocyte organoid outgrowth using temporal transcriptomic and phenotypic approaches. FHs initiate reciprocal transcriptional programs involving increased proliferation and repressed lipid metabolism upon initiation of organoid growth. We exploit these insights to design maturation conditions for FH organoids, resulting in acquisition of mature hepatocyte morphological traits and increased expression of functional markers. During PHH organoid outgrowth in the same culture condition as for FHs, the adult transcriptomes initially mimic the fetal transcriptomic signatures, but PHHs rapidly acquire disbalanced proliferation-lipid metabolism dynamics, resulting in steatosis and halted organoid growth. IL6 supplementation, as emerged from the fetal dataset, and simultaneous activation of the metabolic regulator FXR, prevents steatosis and promotes PHH proliferation, resulting in improved expansion of the derived organoids. Single-cell RNA sequencing analyses reveal preservation of their fetal and adult hepatocyte identities in the respective organoid cultures. Our findings uncover mitogen requirements and metabolic differences determining proliferation of hepatocytes changing from development to adulthood.


Subject(s)
Cell Proliferation , Hepatocytes , Lipid Metabolism , Organoids , Transcriptome , Humans , Hepatocytes/metabolism , Hepatocytes/cytology , Organoids/metabolism , Fetus/metabolism , Adult , Interleukin-6/metabolism , Interleukin-6/genetics , Cells, Cultured
5.
Bull Exp Biol Med ; 176(5): 703-708, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38724815

ABSTRACT

The activity of known modulators of the Nrf2 signaling pathway (bardoxolone and brusatol) was studied on cultures of tumor organoids of metastatic colorectal cancer previously obtained from three patients. The effect of modulators was studied both as monotherapy and in combination with standard chemotherapy drugs used to treat colorectal cancer. The Nrf2 inhibitor brusatol and the Nrf2 activator bardoxolone have antitumor activity. Moreover, bardoxolone and brusatol also significantly enhance the effect of the chemotherapy drugs 5-fluorouracil, oxaliplatin, and irinotecan metabolite SN-38. Thus, bardoxolone and brusatol can be considered promising candidates for further preclinical and clinical studies in the treatment of colorectal cancer.


Subject(s)
Colorectal Neoplasms , Fluorouracil , Irinotecan , NF-E2-Related Factor 2 , Organoids , Oxaliplatin , Quassins , Signal Transduction , NF-E2-Related Factor 2/metabolism , Humans , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/pathology , Colorectal Neoplasms/metabolism , Quassins/pharmacology , Quassins/therapeutic use , Organoids/drug effects , Organoids/metabolism , Organoids/pathology , Signal Transduction/drug effects , Fluorouracil/pharmacology , Fluorouracil/therapeutic use , Oxaliplatin/pharmacology , Oxaliplatin/therapeutic use , Irinotecan/pharmacology , Irinotecan/therapeutic use , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Drug Synergism , Camptothecin/analogs & derivatives , Camptothecin/pharmacology , Camptothecin/therapeutic use
6.
Cells ; 13(9)2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38727265

ABSTRACT

Fibrous dysplasia (FD) is a rare bone disorder characterized by the replacement of normal bone with benign fibro-osseous tissue. Developments in our understanding of the pathophysiology and treatment options are impeded by the lack of suitable research models. In this study, we developed an in vitro organotypic model capable of recapitulating key intrinsic and phenotypic properties of FD. Initially, transcriptomic profiling of individual cells isolated from patient lesional tissues unveiled intralesional molecular and cellular heterogeneity. Leveraging these insights, we established patient-derived organoids (PDOs) using primary cells obtained from patient FD lesions. Evaluation of PDOs demonstrated preservation of fibrosis-associated constituent cell types and transcriptional signatures observed in FD lesions. Additionally, PDOs retained distinct constellations of genomic and metabolic alterations characteristic of FD. Histological evaluation further corroborated the fidelity of PDOs in recapitulating important phenotypic features of FD that underscore their pathophysiological relevance. Our findings represent meaningful progress in the field, as they open up the possibility for in vitro modeling of rare bone lesions in a three-dimensional context and may signify the first step towards creating a personalized platform for research and therapeutic studies.


Subject(s)
Fibrous Dysplasia of Bone , Organoids , Phenotype , Humans , Organoids/pathology , Organoids/metabolism , Fibrous Dysplasia of Bone/pathology , Fibrous Dysplasia of Bone/genetics , Fibrous Dysplasia of Bone/metabolism , Male , Female , Transcriptome/genetics , Adult
7.
Mol Biol Rep ; 51(1): 606, 2024 May 05.
Article in English | MEDLINE | ID: mdl-38704498

ABSTRACT

BACKGROUND: Recent in vitro studies using RB1+/- fibroblasts and MSCs have shown molecular and functional disruptions without the need for biallelic loss of RB1. However, this was not reflected in the recent in vitro studies employing RB1+/- retinal organoids. To gain further insights into the molecular disruptions in the RB1+/- retinal organoids, we performed a high throughput RNA sequencing analysis. METHODS AND RESULTS: iPSCs were generated from RB1+/+ and RB1+/- OAMSCs derived from retinoblastoma patients. RB1+/+ and RB1+/- iPSCs were subjected to a step-wise retinal differentiation protocol. Retinal differentiation was evaluated by Real-time PCR and flow cytometry analysis of the retinal markers. To gain further insights into the molecular differences in RB1+/- retinal organoids, a high throughput RNA sequencing followed by differential gene expression analysis and gene set enrichment analysis (GSEA) was performed. The analysis revealed a shift from the regular metabolic process of glycolysis to oxidative phosphorylation in the RB1+/- retinal organoids. To investigate further, we performed assays to determine the levels of pyruvate, lactate and ATP in the retinal organoids. The results revealed significant increase in ATP and pyruvate levels in RB1+/- retinal organoids of day 120 compared to that of the RB1+/+. The results thus revealed enhanced ATP production in the RB1+/- retinal organoids. CONCLUSION: The study provides novel insights into the metabolic phenotype of heterozygous RB1 mutant suggesting dysregulation of energy metabolism and glycolytic pathways to be first step even before the changes in cellular proliferation or other phenotypic consequences ensue.


Subject(s)
Adenosine Triphosphate , Cell Differentiation , Induced Pluripotent Stem Cells , Mutation , Organoids , Retina , Retinoblastoma , Humans , Induced Pluripotent Stem Cells/metabolism , Induced Pluripotent Stem Cells/cytology , Organoids/metabolism , Retina/metabolism , Retina/cytology , Retinoblastoma/genetics , Retinoblastoma/metabolism , Adenosine Triphosphate/metabolism , Cell Differentiation/genetics , Mutation/genetics , Heterozygote , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism , Retinoblastoma Protein/genetics , Retinoblastoma Protein/metabolism , Glycolysis/genetics , Retinoblastoma Binding Proteins/genetics , Retinoblastoma Binding Proteins/metabolism
8.
Cell Death Dis ; 15(5): 308, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38693114

ABSTRACT

Heart disease involves irreversible myocardial injury that leads to high morbidity and mortality rates. Numerous cell-based cardiac in vitro models have been proposed as complementary approaches to non-clinical animal research. However, most of these approaches struggle to accurately replicate adult human heart conditions, such as myocardial infarction and ventricular remodeling pathology. The intricate interplay between various cell types within the adult heart, including cardiomyocytes, fibroblasts, and endothelial cells, contributes to the complexity of most heart diseases. Consequently, the mechanisms behind heart disease induction cannot be attributed to a single-cell type. Thus, the use of multi-cellular models becomes essential for creating clinically relevant in vitro cell models. This study focuses on generating self-organizing heart organoids (HOs) using human-induced pluripotent stem cells (hiPSCs). These organoids consist of cardiomyocytes, fibroblasts, and endothelial cells, mimicking the cellular composition of the human heart. The multi-cellular composition of HOs was confirmed through various techniques, including immunohistochemistry, flow cytometry, q-PCR, and single-cell RNA sequencing. Subsequently, HOs were subjected to hypoxia-induced ischemia and ischemia-reperfusion (IR) injuries within controlled culture conditions. The resulting phenotypes resembled those of acute myocardial infarction (AMI), characterized by cardiac cell death, biomarker secretion, functional deficits, alterations in calcium ion handling, and changes in beating properties. Additionally, the HOs subjected to IR efficiently exhibited cardiac fibrosis, displaying collagen deposition, disrupted calcium ion handling, and electrophysiological anomalies that emulate heart disease. These findings hold significant implications for the advancement of in vivo-like 3D heart and disease modeling. These disease models present a promising alternative to animal experimentation for studying cardiac diseases, and they also serve as a platform for drug screening to identify potential therapeutic targets.


Subject(s)
Fibrosis , Induced Pluripotent Stem Cells , Myocardial Infarction , Myocytes, Cardiac , Organoids , Humans , Myocardial Infarction/pathology , Myocardial Infarction/metabolism , Induced Pluripotent Stem Cells/metabolism , Organoids/metabolism , Organoids/pathology , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Myocardium/pathology , Myocardium/metabolism , Fibroblasts/metabolism , Fibroblasts/pathology , Endothelial Cells/metabolism , Endothelial Cells/pathology
9.
Cell ; 187(10): 2465-2484.e22, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38701782

ABSTRACT

Remyelination failure in diseases like multiple sclerosis (MS) was thought to involve suppressed maturation of oligodendrocyte precursors; however, oligodendrocytes are present in MS lesions yet lack myelin production. We found that oligodendrocytes in the lesions are epigenetically silenced. Developing a transgenic reporter labeling differentiated oligodendrocytes for phenotypic screening, we identified a small-molecule epigenetic-silencing-inhibitor (ESI1) that enhances myelin production and ensheathment. ESI1 promotes remyelination in animal models of demyelination and enables de novo myelinogenesis on regenerated CNS axons. ESI1 treatment lengthened myelin sheaths in human iPSC-derived organoids and augmented (re)myelination in aged mice while reversing age-related cognitive decline. Multi-omics revealed that ESI1 induces an active chromatin landscape that activates myelinogenic pathways and reprograms metabolism. Notably, ESI1 triggered nuclear condensate formation of master lipid-metabolic regulators SREBP1/2, concentrating transcriptional co-activators to drive lipid/cholesterol biosynthesis. Our study highlights the potential of targeting epigenetic silencing to enable CNS myelin regeneration in demyelinating diseases and aging.


Subject(s)
Epigenesis, Genetic , Myelin Sheath , Oligodendroglia , Remyelination , Animals , Myelin Sheath/metabolism , Humans , Mice , Remyelination/drug effects , Oligodendroglia/metabolism , Central Nervous System/metabolism , Mice, Inbred C57BL , Rejuvenation , Induced Pluripotent Stem Cells/metabolism , Induced Pluripotent Stem Cells/drug effects , Sterol Regulatory Element Binding Protein 1/metabolism , Organoids/metabolism , Organoids/drug effects , Demyelinating Diseases/metabolism , Demyelinating Diseases/genetics , Cell Differentiation/drug effects , Small Molecule Libraries/pharmacology , Male , Regeneration/drug effects , Multiple Sclerosis/metabolism , Multiple Sclerosis/genetics , Multiple Sclerosis/drug therapy , Multiple Sclerosis/pathology
10.
Science ; 384(6698): eadh0559, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38781390

ABSTRACT

Nucleotide changes in gene regulatory elements are important determinants of neuronal development and diseases. Using massively parallel reporter assays in primary human cells from mid-gestation cortex and cerebral organoids, we interrogated the cis-regulatory activity of 102,767 open chromatin regions, including thousands of sequences with cell type-specific accessibility and variants associated with brain gene regulation. In primary cells, we identified 46,802 active enhancer sequences and 164 variants that alter enhancer activity. Activity was comparable in organoids and primary cells, suggesting that organoids provide an adequate model for the developing cortex. Using deep learning we decoded the sequence basis and upstream regulators of enhancer activity. This work establishes a comprehensive catalog of functional gene regulatory elements and variants in human neuronal development.


Subject(s)
Cerebral Cortex , Enhancer Elements, Genetic , Organoids , Humans , Cerebral Cortex/embryology , Cerebral Cortex/metabolism , Cerebral Cortex/growth & development , Organoids/metabolism , Deep Learning , Chromatin/metabolism , Chromatin/genetics , Gene Expression Regulation, Developmental , Neurogenesis/genetics , Regulatory Sequences, Nucleic Acid , Neurons/metabolism
11.
Nat Commun ; 15(1): 3946, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38729950

ABSTRACT

Disease modeling with isogenic Induced Pluripotent Stem Cell (iPSC)-differentiated organoids serves as a powerful technique for studying disease mechanisms. Multiplexed coculture is crucial to mitigate batch effects when studying the genetic effects of disease-causing variants in differentiated iPSCs or organoids, and demultiplexing at the single-cell level can be conveniently achieved by assessing natural genetic barcodes. Here, to enable cost-efficient time-series experimental designs via multiplexed bulk and single-cell RNA-seq of hybrids, we introduce a computational method in our Vireo Suite, Vireo-bulk, to effectively deconvolve pooled bulk RNA-seq data by genotype reference, and thereby quantify donor abundance over the course of differentiation and identify differentially expressed genes among donors. Furthermore, with multiplexed scRNA-seq and bulk RNA-seq, we demonstrate the usefulness and necessity of a pooled design to reveal donor iPSC line heterogeneity during macrophage cell differentiation and to model rare WT1 mutation-driven kidney disease with chimeric organoids. Our work provides an experimental and analytic pipeline for dissecting disease mechanisms with chimeric organoids.


Subject(s)
Cell Differentiation , Induced Pluripotent Stem Cells , Organoids , RNA-Seq , Single-Cell Analysis , Organoids/metabolism , Single-Cell Analysis/methods , Induced Pluripotent Stem Cells/metabolism , Induced Pluripotent Stem Cells/cytology , Humans , Cell Differentiation/genetics , RNA-Seq/methods , Sequence Analysis, RNA/methods , Macrophages/metabolism , Macrophages/cytology , Animals , Single-Cell Gene Expression Analysis
12.
Gut Microbes ; 16(1): 2347722, 2024.
Article in English | MEDLINE | ID: mdl-38706205

ABSTRACT

The intestine is prone to radiation damage in patients undergoing radiotherapy for pelvic tumors. However, there are currently no effective drugs available for the prevention or treatment of radiation-induced enteropathy (RIE). In this study, we aimed at investigating the impact of indole-3-carboxaldehyde (I3A) derived from the intestinal microbiota on RIE. Intestinal organoids were isolated and cultivated for screening radioprotective tryptophan metabolites. A RIE model was established using 13 Gy whole-abdominal irradiation in male C57BL/6J mice. After oral administration of I3A, its radioprotective ability was assessed through the observation of survival rates, clinical scores, and pathological analysis. Intestinal stem cell survival and changes in the intestinal barrier were observed through immunofluorescence and immunohistochemistry. Subsequently, the radioprotective mechanisms of I3A was investigated through 16S rRNA and transcriptome sequencing, respectively. Finally, human colon cancer cells and organoids were cultured to assess the influence of I3A on tumor radiotherapy. I3A exhibited the most potent radioprotective effect on intestinal organoids. Oral administration of I3A treatment significantly increased the survival rate in irradiated mice, improved clinical and histological scores, mitigated mucosal damage, enhanced the proliferation and differentiation of Lgr5+ intestinal stem cells, and maintained intestinal barrier integrity. Furthermore, I3A enhanced the abundance of probiotics, and activated the AhR/IL-10/Wnt signaling pathway to promote intestinal epithelial proliferation. As a crucial tryptophan metabolite, I3A promotes intestinal epithelial cell proliferation through the AhR/IL-10/Wnt signaling pathway and upregulates the abundance of probiotics to treat RIE. Microbiota-derived I3A demonstrates potential clinical application value for the treatment of RIE.


Subject(s)
Gastrointestinal Microbiome , Indoles , Mice, Inbred C57BL , Probiotics , Receptors, Aryl Hydrocarbon , Wnt Signaling Pathway , Animals , Mice , Gastrointestinal Microbiome/drug effects , Male , Humans , Probiotics/administration & dosage , Probiotics/pharmacology , Receptors, Aryl Hydrocarbon/metabolism , Indoles/metabolism , Indoles/pharmacology , Radiation-Protective Agents/pharmacology , Organoids/metabolism , Radiation Injuries/metabolism , Radiation Injuries/prevention & control , Intestinal Mucosa/metabolism , Intestinal Mucosa/microbiology , Intestinal Mucosa/radiation effects , Intestines/microbiology , Intestines/radiation effects , Basic Helix-Loop-Helix Transcription Factors/metabolism , Basic Helix-Loop-Helix Transcription Factors/genetics
13.
Cell Rep Med ; 5(5): 101544, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38697102

ABSTRACT

Prime editing is a recent, CRISPR-derived genome editing technology capable of introducing precise nucleotide substitutions, insertions, and deletions. Here, we present prime editing approaches to correct L227R- and N1303K-CFTR, two mutations that cause cystic fibrosis and are not eligible for current market-approved modulator therapies. We show that, upon DNA correction of the CFTR gene, the complex glycosylation, localization, and, most importantly, function of the CFTR protein are restored in HEK293T and 16HBE cell lines. These findings were subsequently validated in patient-derived rectal organoids and human nasal epithelial cells. Through analysis of predicted and experimentally identified candidate off-target sites in primary stem cells, we confirm previous reports on the high prime editor (PE) specificity and its potential for a curative CF gene editing therapy. To facilitate future screening of genetic strategies in a translational CF model, a machine learning algorithm was developed for dynamic quantification of CFTR function in organoids (DETECTOR: "detection of targeted editing of CFTR in organoids").


Subject(s)
Cystic Fibrosis Transmembrane Conductance Regulator , Cystic Fibrosis , Epithelial Cells , Gene Editing , Mutation , Organoids , Humans , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Cystic Fibrosis/genetics , Cystic Fibrosis/pathology , Cystic Fibrosis/metabolism , Organoids/metabolism , Gene Editing/methods , Epithelial Cells/metabolism , Mutation/genetics , HEK293 Cells , CRISPR-Cas Systems/genetics
14.
J Cell Biol ; 223(8)2024 Aug 05.
Article in English | MEDLINE | ID: mdl-38727809

ABSTRACT

Binucleated polyploid cells are common in many animal tissues, where they arise by endomitosis, a non-canonical cell cycle in which cells enter M phase but do not undergo cytokinesis. Different steps of cytokinesis have been shown to be inhibited during endomitosis M phase in rodents, but it is currently unknown how human cells undergo endomitosis. In this study, we use fetal-derived human hepatocyte organoids (Hep-Orgs) to investigate how human hepatocytes initiate and execute endomitosis. We find that cells in endomitosis M phase have normal mitotic timings, but lose membrane anchorage to the midbody during cytokinesis, which is associated with the loss of four cortical anchoring proteins, RacGAP1, Anillin, SEPT9, and citron kinase (CIT-K). Moreover, reduction of WNT activity increases the percentage of binucleated cells in Hep-Orgs, an effect that is dependent on the atypical E2F proteins, E2F7 and E2F8. Together, we have elucidated how hepatocytes undergo endomitosis in human Hep-Orgs, providing new insights into the mechanisms of endomitosis in mammals.


Subject(s)
Cytokinesis , Hepatocytes , Mitosis , Organoids , Humans , Hepatocytes/metabolism , Organoids/cytology , Organoids/metabolism , Polyploidy
15.
Int J Mol Sci ; 25(9)2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38732126

ABSTRACT

Enterohemorrhagic Escherichia coli (EHEC) is a critical public health concern due to its role in severe gastrointestinal illnesses in humans, including hemorrhagic colitis and the life-threatening hemolytic uremic syndrome. While highly pathogenic to humans, cattle, the main reservoir for EHEC, often remain asymptomatic carriers, complicating efforts to control its spread. Our study introduces a novel method to investigate EHEC using organoid-derived monolayers from adult bovine ileum and rectum. These polarized epithelial monolayers were exposed to EHEC for four hours, allowing us to perform comparative analyses between the ileal and rectal tissues. Our findings mirrored in vivo observations, showing a higher colonization rate in the rectum compared with the ileum (44.0% vs. 16.5%, p < 0.05). Both tissues exhibited an inflammatory response with increased expression levels of TNF-a (p < 0.05) and a more pronounced increase of IL-8 in the rectum (p < 0.01). Additionally, the impact of EHEC on the mucus barrier varied across these gastrointestinal regions. Innovative visualization techniques helped us study the ultrastructure of mucus, revealing a net-like mucin glycoprotein organization. While further cellular differentiation could enhance model accuracy, our research significantly deepens understanding of EHEC pathogenesis in cattle and informs strategies for the preventative measures and therapeutic interventions.


Subject(s)
Enterohemorrhagic Escherichia coli , Ileum , Organoids , Rectum , Animals , Cattle , Ileum/microbiology , Ileum/metabolism , Ileum/ultrastructure , Rectum/microbiology , Enterohemorrhagic Escherichia coli/pathogenicity , Organoids/metabolism , Organoids/microbiology , Mucus/metabolism , Escherichia coli Infections/microbiology , Intestinal Mucosa/microbiology , Intestinal Mucosa/metabolism , Intestinal Mucosa/ultrastructure
16.
Stem Cell Res Ther ; 15(1): 132, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38702808

ABSTRACT

BACKGROUND: Induced pluripotent stem cells (iPSCs)-derived kidney organoids are a promising model for studying disease mechanisms and renal development. Despite several protocols having been developed, further improvements are needed to overcome existing limitations and enable a wider application of this model. One of the approaches to improve the differentiation of renal organoids in vitro is to include in the system cell types important for kidney organogenesis in vivo, such as macrophages. Another approach could be to improve cell survival. Mesodermal lineage differentiation is the common initial step of the reported protocols. The glycogen synthase kinase-3 (GSK-3) activity inhibitor, CHIR99021 (CHIR), is applied to induce mesodermal differentiation. It has been reported that CHIR simultaneously induces iPSCs apoptosis that can compromise cell differentiation. We thought to interfere with CHIR-induced apoptosis of iPSCs using rapamycin. METHODS: Differentiation of kidney organoids from human iPSCs was performed. Cell survival and autophagy were analyzed using Cell counting kit 8 (CCK8) kit and Autophagy detection kit. Cells were treated with rapamycin or co-cultured with human monocytes isolated from peripheral blood or iPSCs-macrophages using a transwell co-culture system. Monocyte-derived extracellular vesicles (EVs) were isolated using polyethylene glycol precipitation. Expression of apoptotic markers cleaved Caspase 3, Poly [ADP-ribose] polymerase 1 (PARP-1) and markers of differentiation T-Box Transcription Factor 6 (TBX6), odd-skipped related 1 (OSR1), Nephrin, E-Cadherin, Paired box gene 2 (Pax2) and GATA Binding Protein 3 (Gata3) was assessed by RT-PCR and western blotting. Organoids were imaged by 3D-confocal microscopy. RESULTS: We observed that CHIR induced apoptosis of iPSCs during the initial stage of renal organoid differentiation. Underlying mechanisms implied the accumulation of reactive oxygen species and decreased autophagy. Activation of autophagy by rapamacin and by an indirect co-culture of differentiating iPSCs with iPSCs-macrophages and human peripheral blood monocytes prevented apoptosis induced by CHIR. Furthermore, monocytes (but not rapamycin) strongly promoted expression of renal differentiation markers and organoids development via released extracellular vesicles. CONCLUSION: Our data suggest that co-culturing of iPSCs with human monocytes strongly improves differentiation of kidney organoids. An underlying mechanism of monocytic action implies, but not limited to, an increased autophagy in CHIR-treated iPSCs. Our findings enhance the utility of kidney organoid models.


Subject(s)
Apoptosis , Cell Differentiation , Induced Pluripotent Stem Cells , Kidney , Monocytes , Organoids , Humans , Induced Pluripotent Stem Cells/cytology , Induced Pluripotent Stem Cells/metabolism , Induced Pluripotent Stem Cells/drug effects , Organoids/cytology , Organoids/metabolism , Organoids/drug effects , Apoptosis/drug effects , Cell Differentiation/drug effects , Kidney/cytology , Kidney/metabolism , Monocytes/metabolism , Monocytes/cytology , Monocytes/drug effects , Pyridines/pharmacology , Pyrimidines/pharmacology , Sirolimus/pharmacology , Autophagy/drug effects , Coculture Techniques/methods , Macrophages/metabolism , Macrophages/cytology , Macrophages/drug effects
17.
Nat Cell Biol ; 26(5): 710-718, 2024 May.
Article in English | MEDLINE | ID: mdl-38714853

ABSTRACT

During brain development, neural progenitors expand through symmetric divisions before giving rise to differentiating cell types via asymmetric divisions. Transition between those modes varies among individual neural stem cells, resulting in clones of different sizes. Imaging-based lineage tracing allows for lineage analysis at high cellular resolution but systematic approaches to analyse clonal behaviour of entire tissues are currently lacking. Here we implement whole-tissue lineage tracing by genomic DNA barcoding in 3D human cerebral organoids, to show that individual stem cell clones produce progeny on a vastly variable scale. By using stochastic modelling we find that variable lineage sizes arise because a subpopulation of lineages retains symmetrically dividing cells. We show that lineage sizes can adjust to tissue demands after growth perturbation via chemical ablation or genetic restriction of a subset of cells in chimeric organoids. Our data suggest that adaptive plasticity of stem cell populations ensures robustness of development in human brain organoids.


Subject(s)
Cell Lineage , Neural Stem Cells , Organoids , Organoids/cytology , Organoids/metabolism , Humans , Neural Stem Cells/metabolism , Neural Stem Cells/cytology , Brain/cytology , Brain/growth & development , Brain/metabolism , Cell Differentiation , Cell Proliferation , Clone Cells , Neurogenesis/genetics , DNA Barcoding, Taxonomic , Animals
18.
PLoS One ; 19(5): e0303260, 2024.
Article in English | MEDLINE | ID: mdl-38743670

ABSTRACT

The nail matrix containing stem cell populations produces nails and may contribute to fingertip regeneration. Nails are important tissues that maintain the functions of the hand and foot for handling objects and locomotion. Tumor chemotherapy impairs nail growth and, in many cases, loses them, although not permanently. In this report, we have achieved the successful differentiation of nail stem (NS)-like cells from human-induced pluripotent stem cells (iPSCs) via digit organoids by stepwise stimulation, tracing the molecular processes involved in limb development. Comprehensive mRNA sequencing analysis revealed that the digit organoid global gene expression profile fits human finger development. The NS-like cells expressed Lgr6 mRNA and protein and produced type-I keratin, KRT17, and type-II keratin, KRT81, which are abundant in nails. Furthermore, we succeeded in producing functional Lgr6-reporter human iPSCs. The reporter iPSC-derived Lgr6-positive cells also produced KRT17 and KRT81 proteins in the percutaneously transplanted region. To the best of our knowledge, this is the first report of NS-like cell differentiation from human iPSCs. Our differentiation method and reporter construct enable the discovery of drugs for nail repair and possibly fingertip-regenerative therapy.


Subject(s)
Cell Differentiation , Induced Pluripotent Stem Cells , Nails , Receptors, G-Protein-Coupled , Humans , Nails/metabolism , Nails/cytology , Induced Pluripotent Stem Cells/metabolism , Induced Pluripotent Stem Cells/cytology , Receptors, G-Protein-Coupled/metabolism , Receptors, G-Protein-Coupled/genetics , Organoids/metabolism , Organoids/cytology , Animals , Cells, Cultured
19.
Nat Commun ; 15(1): 4047, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38744873

ABSTRACT

Human hippocampal organoids (hHOs) derived from human induced pluripotent stem cells (hiPSCs) have emerged as promising models for investigating neurodegenerative disorders, such as schizophrenia and Alzheimer's disease. However, obtaining the electrical information of these free-floating organoids in a noninvasive manner remains a challenge using commercial multi-electrode arrays (MEAs). The three-dimensional (3D) MEAs developed recently acquired only a few neural signals due to limited channel numbers. Here, we report a hippocampal cyborg organoid (cyb-organoid) platform coupling a liquid metal-polymer conductor (MPC)-based mesh neuro-interface with hHOs. The mesh MPC (mMPC) integrates 128-channel multielectrode arrays distributed on a small surface area (~2*2 mm). Stretchability (up to 500%) and flexibility of the mMPC enable its attachment to hHOs. Furthermore, we show that under Wnt3a and SHH activator induction, hHOs produce HOPX+ and PAX6+ progenitors and ZBTB20+PROX1+ dentate gyrus (DG) granule neurons. The transcriptomic signatures of hHOs reveal high similarity to the developing human hippocampus. We successfully detect neural activities from hHOs via the mMPC from this cyb-organoid. Compared with traditional planar devices, our non-invasive coupling offers an adaptor for recording neural signals from 3D models.


Subject(s)
Hippocampus , Induced Pluripotent Stem Cells , Organoids , Humans , Organoids/metabolism , Organoids/cytology , Hippocampus/cytology , Hippocampus/metabolism , Induced Pluripotent Stem Cells/cytology , Induced Pluripotent Stem Cells/metabolism , Neurons/metabolism , Neurons/cytology , Metals/chemistry , Transcriptome , Dentate Gyrus/cytology , Dentate Gyrus/metabolism
20.
Sci Adv ; 10(20): eadl3511, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38748808

ABSTRACT

Cervical cancer, primarily squamous cell carcinoma, is the most prevalent gynecologic malignancy. Organoids can mimic tumor development in vitro, but current Matrigel inaccurately replicates the tissue-specific microenvironment. This limitation compromises the accurate representation of tumor heterogeneity. We collected para-cancerous cervical tissues from patients diagnosed with cervical squamous cell carcinoma (CSCC) and prepared uterine cervix extracellular matrix (UCEM) hydrogels. Proteomic analysis of UCEM identified several tissue-specific signaling pathways including human papillomavirus, phosphatidylinositol 3-kinase-AKT, and extracellular matrix receptor. Secreted proteins like FLNA, MYH9, HSPA8, and EEF1A1 were present, indicating UCEM successfully maintained cervical proteins. UCEM provided a tailored microenvironment for CSCC organoids, enabling formation and growth while preserving tumorigenic potential. RNA sequencing showed UCEM-organoids exhibited greater similarity to native CSCC and reflected tumor heterogeneity by exhibiting CSCC-associated signaling pathways including virus protein-cytokine, nuclear factor κB, tumor necrosis factor, and oncogenes EGR1, FPR1, and IFI6. Moreover, UCEM-organoids developed chemotherapy resistance. Our research provides insights into advanced organoid technology through native matrix hydrogels.


Subject(s)
Carcinoma, Squamous Cell , Extracellular Matrix , Hydrogels , Organoids , Uterine Cervical Neoplasms , Humans , Female , Organoids/metabolism , Organoids/pathology , Organoids/drug effects , Extracellular Matrix/metabolism , Hydrogels/chemistry , Uterine Cervical Neoplasms/metabolism , Uterine Cervical Neoplasms/pathology , Uterine Cervical Neoplasms/genetics , Carcinoma, Squamous Cell/metabolism , Carcinoma, Squamous Cell/pathology , Carcinoma, Squamous Cell/genetics , Cervix Uteri/pathology , Cervix Uteri/metabolism , Tumor Microenvironment , Signal Transduction , Animals , Proteomics/methods , Mice
SELECTION OF CITATIONS
SEARCH DETAIL
...